Technical Report Documentation Page

1. Report No.	2. Government Accession	No. 3. Re	cipient's Catalog No.			
DOT/FAA/AM-23/XX						
4. Title and Subtitle		5 0	port Data			
Refreshing the "1% Rule" as the Bas	is for an AAM Accentah	le Level of Safety Sept	September 18, 2023			
		6 P	6 Performing Organization Code			
		AAM	-631	10000		
7. Author(s)		8. Pe	rforming Organization	Report No.		
R. Greenhaw, A. Tvaryanas						
9. Performing Organization Name and Add	lress	10. V	Vork Unit No. (TRAIS)	NA?		
Civil Aerospace Medical Institute (CAMI)						
Federal Aviation Administration		11.0	ontract or Grant No.			
Oklanoma City, OK 73169						
12. Sponsoring Agency Name and Address			13. Type of Report and Period Covered			
Office of Aerospace Medicine		Pres	Presentation			
Federal Aviation Administration		14 5	popeoring Agoney Co	do		
800 Independence Ave., S.W.		14. 0	14. Sponsoning Agency Code			
Washington, DC 20591						
15. Supplementary Notes						
Author ORCIDs:						
R. Greenhaw, FAA (0000-0002-98	63-7821), A. Tvaryanas	(0000-0003-0180-2374)				
There is no funding source to report.	The authors know of no	conflicts of interest.				
16 Abstract	<u>10.21949/1524451</u> Ther	e is no dataset associated	i with this study.			
• INTRODUCTION The purpos	e of the study is to deter	nine the Accentable Lev	el of Safety (ALOS) for pilot		
incapacitation in part 121 on	erations when the assum	ntions underlying the int	ernationally record	ized "1% rule" are		
revised using current data T	he study was begun as a	response to FAA Order '	VS 8000 367D AV	SSMS with OMS		
Requirements: Oversight org	anizations [such as the (Office of Aerospace Med	icinel must determi	ne the acceptable		
level of safety performance f	for those components of	the aerospace system for	which they have or	versight		
responsibility. The 1% rule y	vas used as a model beca	use it was the initial frar	nework linking aero	medical risk		
acceptance to airworthiness	risk accepted by engineer	s, it has been incorporat	ed into European Jo	oint Aviation		
Authorities' guidance, it is a	ccepted in EASA guideli	nes, and has been endors	ed by ICAO as thre	shold of choice.		
METHODS. A literature searce	h produced 1% rule info	rmation that was decons	tructed to give eight	t statements which.		
together, provide a logical de	evelopment for the existing	ng rule. Each of these sta	tements was then e	xamined, in view of		
literature, to determine whet	ner it was still operable a	nd whether it was consis	tent with aviation r	egulations and		
practices within FAA jurisdi	ction. Each statement that	t was no longer operable	or FAA consistent	was replaced using		
information developed from	current literature. The re	sulting rule was assessed	using FAA Order	8040.4C. RESULTS.		
Order 8040.4C specifies three	e levels of safety risk: lo	w risk is acceptable with	out active manager	nent, medium risk is		
acceptable without mitigation	n but requires tracking a	nd monitoring, and high	risk can only be acc	epted by AVS-1. A		
critical parameter, number of	f accidents per incapacita	tion event during critica	period, has been so	et at three different		
values in the literature: 0.01,	0.005, and 0.0025. For t	he most conservative of	these, 0.01, the mod	lified rule results in a		
medium risk level as a 1% an	nd a 2% rule (but not 5%). And for the 0.005 para	meter value the mo	dified rule results in		
a medium risk level as 1%, 2	%, and 5% rules. The 0.	0025 parameter value res	ults in a low risk as	a 1% rule and		
medium risk as 2% and 5% r	ules. DISCUSSION. At lea	ast two of the assumption	ns used to develop t	he modified rule		
bear further scrutiny: the actual number of accidents per incapacitation event during critical period should be						
reviewed $-$ is it 0.01, 0.005,	reviewed – is it 0.01, 0.005, 0.0025 or something else? The assumption that a fatal accident results only if (a)					
incapacitation event occurs. (b) critical phase of flight, and (c) ineffective assumption of control by second pilot is						
central to the risk analysis, a	nd should be reviewed.		1	• 1		
17. Key Word 18. Distribution Statement						
Aviation medicine, safety and health,	one-percent rule	Document is available	ailable to the public through the National			
Transportation			: <u>https://ntl.bts.gov</u>	<u>/ntl</u>		
19. Security Classif. (of this report) 20. Security Classif. (of this page) 21			21. No. of Pages	22. Price		
Unclassified	Unclassif	lea	15			

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

Refreshing the "1% Rule" as the Basis for an AAM Acceptable Level of Safety

Presented to: AAM Safety Council

By: Date: Richard Greenhaw and Anthony Tvaryanas 6/20/2023

Federal Aviation Administration

Determine the Acceptable Level of Safety (ALOS) for pilot incapacitation in part 121 operations when the assumptions underlying the internationally recognized "1% rule" are revised using current data

AVS SMS requirements

- Office of Aerospace Medicine part of the "AVS oversight organization"
- FAA Order VS 8000.367D, AVSSMS with QMS Requirements: Oversight organizations must determine the acceptable level of safety performance for those components of the aerospace system for which they have oversight responsibility

1% rule background

- Premised on AsMA paper (1973) linking aeromedical risk acceptance to airworthiness risk accepted by engineers
- Proposed at the first UK Workshop on Aviation Cardiology (1984)
- Incorporated into European Joint Aviation Authorities' guidance
- Accepted in EASA guidelines
- Endorsed by ICAO as threshold of choice
- Transport Canada
 - 2% annual incapacitation risk for all certificate classes
 - 5% annual incapacitation risk if flying with a certified safety copilot
- Not used by the FAA to date

1% rule development: Rationale / assumptions

Rule statements	Rationale / assumptions
1) Likelihood of incapacitation event in a year ≤1%	Proposed pilot medical certification threshold
2) This is about 10 ⁻⁶ incapacitation events/hour	= 0.01 events per 24x365 = 8,760 hours ≈ 10,000 hours ≈ 0.01 events per 10,000 hours = 1 event/1,000,000 hour
3) Flight duration is about 1 hour	Early 1980s European air carrier typical flight time
4) Assume fatal accident only if (a) incapacitation event occurs, (b) critical phase of flight, and (c) ineffective assumption of control by second pilot	Assume that second pilot will always take control effectively during non-critical flight periods
5) Likelihood of event occurrence during a 1-hour flight is about 10 ⁻⁶	Assume uniform distribution of pilot incapacitations and there are 10,000 hours in a year
6) Probability flight in critical period when incapacitation event occurs about 10% (10 ⁻¹)	Assume 10% of flight time is in critical period (i.e., below 1500 ft AGL)
7) Probability second pilot fails to assume effective control in response to incapacitation event during a critical period is about 10 ⁻²	A single study of airline simulator training that incorporated pilot incapacitation event during approach to landing
8) Probability of (a), (b) and (c) = $10^{-2} \times 10^{-6} \times 10^{-1} = 10^{-9}$, therefore acceptable	The individual probabilities can be multiplied yielding the probability 10 ⁻⁹ , which is an acceptable level of risk

Evaluation of 1% rule statements

Rule statements	Assessment	Revisions
2) This is about 10 ⁻⁶ incapacitation events/hour	Inaccurate	1.14 x 10 ⁻⁶
3) Flight duration is about 1 hour	Inaccurate	2 hours
4) Assume fatal accident only if (a) incapacitation event occurs, (b) critical phase of flight, and (c) ineffective assumption of control by second pilot	Implicit assumption, accept as valid	
5) Likelihood of event occurrence during a 1-hour flight is about 10 ⁻⁶	Inaccurate	1.17 x 10 ⁻⁶
6) Probability flight in critical period when incapacitation event occurs about 10% (10 ⁻¹)	Inaccurate	3.00 x 10 ⁻²
7) Probability second pilot fails to assume effective control in response to incapacitation event during a critical period is about 10 ⁻²	Debatable	0.0025, 0.0050, 0.0100
8) Probability of (a), (b) and (c) = $10^{-2} \times 10^{-6} \times 10^{-1} = 10^{-9}$, therefore acceptable	Valid but inapplicable	Use FAA Order 8040.4C

Weakest assumptions

- Fatal accident only if (a) incapacitation event occurs, (b) critical phase of flight, and (c) ineffective assumption of control by second pilot
 - Concurrent, independent medical incapacitation events statistically unlikely
 - Assumes negligible risk of single pilot completing non-critical flight period
- Probability second pilot fails to assume effective control in response to incapacitation event during a critical phase of flight is about 10⁻²
 - Actual rate in simulator study (1984) was 1 failure in 400 incapacitations (0.0025)
 - Failure rate adjusted to 0.0100 to account for simulation artifact (event expectation)
 - Debate about impact of interval technological and CRM advancements on likely failure rate
 - 2004 paper suggested using a failure rate of 0.0050 (doubling the simulator study failure rate)

Risk analysis

$AF = (N \times AC) \times P + (N \times AN) \times (1 - P)$

AF Accidents per flight hour	
------------------------------	--

- *N* Number of incapacitation events per hour
- AC Number of accidents per incapacitation event during critical period
- AN Number of accidents per incapacitation event during noncritical period
- *P* Proportion of flight that is the critical period

Legacy 1% rule			
Ν	10 ⁻⁶		
AC	10 ⁻²		
AN	0		
Р	10 ⁻¹		
$AF = (N \times AC) \times P + 0 =$ 10 ⁻⁶ x 10 ⁻² x 10 ⁻¹ = 10 ⁻⁹			

Update % rule				
Ν	1.17 x10 ⁻⁶			
AC	10 ⁻²			
AN	0			
Р	3 x 10 ⁻²			
$AF = (N \times AC) \times P + 0 =$ (1.17 ×10 ⁻⁶) × 10 ⁻² × (3 × 10 ⁻²) = 3.1 × 10 ⁻¹⁰				

Risk assessment (FAA Order 8040.4C)

		<u>Severity</u>				ohic	
		Minimal	Minor	Major	Halardo	catast	
		5	4	3	2	1]
<u>Likelihood</u>		[Green]	[Yellow]	[Red]	[Red]	[Red]	1,10-1
		[Green]	[Yellow]	[Red]	[Red]	[Red]	1,10-2
Frequent	А	[Green]	[Yellow]	[Red]	[Red]	[Red]	1.103
		[Green]	[Yellow]	[Red]	[Red]	[Red]	1x10 ⁻⁵
		[Green]	[Yellow]	[Red]	[Red]	[Red]	1×10+
Infrequent	В	[Green]	[Yellow]	[Red]	[Red]	[Red]	1x10-5
Extremely Infrequent	С	[Green]	[Yellow]	[Red]	[Red]	[Red]	1x10°
Remote	D	[Green]	[Yellow]	[Yellow]	[Red]	[Red]	1x10-,
Extremely Remote	Е	[Green]	[Green]	[Yellow]	[Yellow]	[Red]	1x10-°
Improbable	F	[Green]	[Green]	[Green]	[Yellow]	[Yellow]	1x10 ⁻⁹
Extremely Improbable	G	[Green]	[Green]	[Green]	[Green]	[Green]	1x10-10
							1x10-11

High Risk [Red] Medium Risk [Yellow] Low Risk [Green]

Annual incapacitation risk (ALOS)	Number of accidents per incapacitation event during critical period	Accidents per flight hour	Risk Level
1%	0.0100	3.51 x 10 ⁻¹⁰	Medium
2%	0.0100	7.02 x 10 ⁻¹⁰	Medium
5%	0.0100	1.76 x 10 ⁻⁰⁹	High
1%	0.0050	1.76 x 10 ⁻¹⁰	Medium
2%	0.0050	3.51 x 10 ⁻¹⁰	Medium
5%	0.0050	8.78 x 10 ⁻¹⁰	Medium
5.7%	0.0050	1.00 x 10 ⁻⁰⁹	High
1%	0.0025	8.78 x 10 ⁻¹¹	Low
2%	0.0025	1.76 x 10 ⁻¹⁰	Medium
5%	0.0025	4.39 x 10 ⁻¹⁰	Medium
11.4%	0.0025	1.00 x 10 ⁻⁰⁹	High

• High risk requires mitigation, tracking, and monitoring and can only be accepted by AVS-1

· Medium risk is acceptable without mitigation but requires tracking and monitoring

· Low risk is acceptable without active management

Next steps

AAM accountable executive:

- Determine acceptability of this method for setting an aeromedical ALOS
- If acceptable:
 - Select value for number of accidents per incapacitation event during critical period (risk appetite)
 - Establish corresponding aeromedical ALOS in safety policy

• Coordinate with AFX:

- Consider joint sponsorship for cooperative research project with industry to repeat the simulation study
- Evaluate/improve the rigor of the 2-pilot risk control as implemented by airlines
 - Pilot incapacitation recognition
 - Contingency single pilot operations

Federal Aviation Administration

Sources

1. Tunstall-Pedoe H. Cardiovascular risk and risk factors in the context of aircrew certification. Eur Heart J 1992; 13(SupplH):16–20.

2. Mitchell SJ, Evans AD. Flight safety and medical incapacitation risk of airline pilots. Aviat Space Environ Med 2004;75:260–8.

3. Chapman PJC. The consequences of in-flight incapacitation in civil aviation. Aviat Space Environ Med 1984; 55:497–500.

4. Buurma M, et al. Circadian Rhythm of Cardiovascular Disease: The Potential of Chronotherapy With Aspirin Front. Cardiovasc. Med., 20 June 2019.

5. Takeda, N., Maemura, K. Circadian clock and the onset of cardiovascular events. *Hypertens Res* **39**, 383–390 (2016). https://doi.org/10.1038/hr.2016.9

6. Joy M. Cardiological aspects of aviation safety: The new European perspective. Eur Heart J 1992; 13(Suppl H):21–6.

7. Mulloy A, Wielgosz A. Cardiovascular risk assessment in pilots Arerosp Med Hum Perf. 2019; 90(8):730-734.

2

8. Lloyd E, Tye W. Systematic safety - safety assessment of aircraft systems. London (UK): London Civil Aviation Authority; 1982:27–34.

9. Chaplin JC. In perspective — the safety of aircraft, pilots and their hearts. Eur Heart J. 1988; 9(Suppl. G):17–20.

10. US Department of Transportation. FAA Order 8040.4C, Safety Risk Management Policy. Draft, in final review as of 6/4/2023.

11. Mitre Corp. Sub-1500ft Flight Time Query. Feb 14, 2023.

12. Evans S, Radcliffe S-A. The annual incapacitation rate of commercial pilots. Aviat Space Environ Med 2012; 83:42 – 9.

13. DeJohn CA, Wolbrink AM, Larcher JG . In-flight medical incapacitation and impairment of airline pilots . Aviat Space Environ Med 2006 ; 77 : 1077 – 9.

14. Tunstall-Pedoe H. Risk of a coronary heart attack in the normal population and how it might be modified in flyers. Eur Heart J 1984;5 Suppl A:43–9.

15. Lloyd E, Tye W. Systematic safety - safety assessment of aircraft systems. London (UK): London Civil Aviation Authority; 1982:27–34.

16. FAA. 2019 Guide for Aviation Medical Examiners. [Accessed 2019 Jan. 24]. 2019:71–
89. Available from: https://www.faa.gov/about/office_org/
headquarters_offices/avs/offices/aam/ame/guide/media/guide.pdf.

17. Gray G, Bron D, Davenport ED, et al. Heart 2019;105:s9–s16.